[J30] Certifying Robustness of Learning-Based Keypoint Detection and Pose Estimation Methods
Xusheng Luo, Tianhao Wei, Simin Liu, Ziwei Wang, Luis Mattei-Mendez, Taylor Loper, Joshua Neighbor, Casidhe Hutchison and Changliu Liu
ACM Transactions on Cyber-Physical Systems, 2025
Citation Formats:
Abstract:
This work addresses the certification of the local robustness of vision-based two-stage 6D object pose estimation. The two-stage method for object pose estimation achieves superior accuracy by first employing deep neural network-driven keypoint regression and then applying a Perspective-n-Point (PnP) technique. Despite advancements, the certification of these methods’ robustness remains scarce. This research aims to fill this gap with a focus on their local robustness on the system level–the capacity to maintain robust estimations amidst semantic input perturbations. The core idea is to transform the certification of local robustness into neural network verification for classification tasks. The challenge is to develop model, input, and output specifications that align with off-the-shelf verification tools. To facilitate verification, we modify the keypoint detection model by substituting nonlinear operations with those more amenable to the verification processes. Instead of injecting random noise into images, as is common, we employ a convex hull representation of images as input specifications to more accurately depict semantic perturbations. Furthermore, by conducting a sensitivity analysis, we propagate the robustness criteria from pose to keypoint accuracy, and then formulating an optimal error threshold allocation problem that allows for the setting of a maximally permissible keypoint deviation thresholds. Viewing each pixel as an individual class, these thresholds result in linear, classification-akin output specifications. Under certain conditions, we demonstrate that the main components of our certification framework are both sound and complete, and validate its effects through extensive evaluations on realistic perturbations. To our knowledge, this is the first study to certify the robustness of large-scale, keypoint-based pose estimation given images in real-world scenarios.
[C100] Modelverification. jl: a comprehensive toolbox for formally verifying deep neural networks
Tianhao Wei, Hanjiang Hu, Luca Marzari, Kai S Yun, Peizhi Niu, Xusheng Luo and Changliu Liu
Conference on Computer Aided Verification, 2025
Citation Formats:
Abstract:
Deep Neural Networks (DNN) are crucial in approximating nonlinear functions across diverse applications, ranging from image classification to control. Verifying specific input-output properties can be a highly challenging task due to the lack of a single, self-contained framework that allows a complete range of verification types. To this end, we present \textttModelVerification.jl (MV), the first comprehensive, cutting-edge toolbox that contains a suite of state-of-the-art methods for verifying different types of DNNs and safety specifications. This versatile toolbox is designed to empower developers and machine learning practitioners with robust tools for verifying and ensuring the trustworthiness of their DNN models.
[C99] Hierarchical Temporal Logic Task and Motion Planning for Multi-Robot Systems
Zhongqi Wei, Xusheng Luo and Changliu Liu
Robotics: Science and Systems, 2025
Citation Formats:
Abstract:
Task and motion planning (TAMP) for multi-robot systems, which integrates discrete task planning with continuous motion planning, remains a challenging problem in robotics. Existing TAMP approaches often struggle to scale effectively for multi-robot systems with complex specifications, leading to infeasible solutions and prolonged computation times. This work addresses the TAMP problem in multi-robot settings where tasks are specified using expressive hierarchical temporal logic and task assignments are not pre-determined. Our approach leverages the efficiency of hierarchical temporal logic specifications for task-level planning and the optimization-based graph of convex sets method for motion-level planning, integrating them within a product graph framework. At the task level, we convert hierarchi- cal temporal logic specifications into a single graph, embedding task allocation within its edges. At the motion level, we represent the feasible motions of multiple robots through convex sets in the configuration space, guided by a sampling-based motion planner. This formulation allows us to define the TAMP problem as a shortest path search within the product graph, where efficient convex optimization techniques can be applied. We prove that our approach is both sound and complete under mild assumptions. To enhance scalability, we introduce a pruning heuristic that reduces the product graph size, enabling efficient planning for high-dimensional multi-robot systems. Additionally, we extend our framework to cooperative pick-and-place tasks involving object handovers between robots. We evaluate our method across various high-dimensional multi-robot scenarios, including simulated and real-world environments with quadrupeds, robotic arms, and automated conveyor systems. Our results show that our approach outperforms existing methods in execution time and solution optimality while effectively scaling with task complexity.
Video:
2024
[J25] Decomposition-based Hierarchical Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications
Xusheng Luo, Shaojun Xu, Ruixuan Liu and Changliu Liu
IEEE Robotics and Automation Letters, 2024
Citation Formats:
Abstract:
Past research into robotic planning with temporal logic specifications, notably Linear Temporal Logic (LTL), was largely based on a single formula for individual or groups of robots. But with increasing task complexity, LTL formulas unavoidably grow lengthy, complicating interpretation and specification generation, and straining the computational capacities of the planners. A recent development has been the hierarchical representation of LTL (Luo et al., 2024) that contains multiple temporal logic specifications, providing a more interpretable framework. However, the proposed planning algorithm assumes the independence of robots within each specification, limiting their application to multi-robot coordination with complex temporal constraints. In this work, we formulated a decomposition-based hierarchical framework. At the high level, each specification is first decomposed into a set of atomic sub-tasks. We further infer the temporal relations among the sub-tasks of different specifications to construct a task network. Subsequently, a Mixed Integer Linear Program is used to assign sub-tasks to various robots. At the lower level, domain-specific controllers are employed to execute sub-tasks. Our approach was experimentally applied to domains of navigation and manipulation. The simulation demonstrated that our approach can find better solutions using less runtimes.
Video:
[U] Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications
Xusheng Luo and Changliu Liu
arXiv:2401.04003, 2024
Citation Formats:
Abstract:
Research in robotic planning with temporal logic specifications, such as syntactically co-safe Linear Temporal Logic (sc-LTL), has relied on single formulas. However, as task complexity increases, sc-LTL formulas become lengthy, making them difficult to interpret and generate, and straining the computational capacities of planners. To address this, we introduce a hierarchical structure to sc-LTL specifications with both syntax and semantics, proving it to be more expressive than flat counterparts. We conducted a user study that compared the flat sc-LTL with our hierarchical version and found that users could more easily comprehend complex tasks using the hierarchical structure. We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning. This method approximates the search space by loosely interconnected sub-spaces, each corresponding to an sc-LTL specification. The search primarily focuses on a single sub-space, transitioning to another under conditions determined by the decomposition of automatons. We develop multiple heuristics to significantly expedite the search. Our theoretical analysis, conducted under mild assumptions, addresses completeness and optimality. Compared to existing methods used in various simulators for service tasks, our approach improves planning times while maintaining comparable solution quality.
[U] Nl2Hltl2Plan: Scaling Up Natural Language Understanding for Multi-Robots Through Hierarchical Temporal Logic Task Representation
Shaojun Xu, Xusheng Luo, Yutong Huang, Letian Leng, Ruixuan Liu and Changliu Liu
arXiv:2408.08188, 2024
Citation Formats:
Abstract:
To enable non-experts to specify long-horizon, multi-robot collaborative tasks, language models are increasingly used to translate natural language commands into formal specifications. However, because translation can occur in multiple ways, such translations may lack accuracy or lead to inefficient multi-robot planning. Our key insight is that concise hierarchical specifications can simplify planning while remaining straightforward to derive from human instructions. We propose Nl2Hltl2Plan, a framework that translates natural language commands into hierarchical Linear Temporal Logic (LTL) and solves the corresponding planning problem. The translation involves two steps leveraging Large Language Models (LLMs). First, an LLM transforms instructions into a Hierarchical Task Tree, capturing logical and temporal relations. Next, a fine-tuned LLM converts sub-tasks into flat LTL formulas, which are aggregated into hierarchical specifications, with the lowest level corresponding to ordered robot actions. These specifications are then used with off-the-shelf planners. Our Nl2Hltl2Plan demonstrates the potential of LLMs in hierarchical reasoning for multi-robot task planning. Evaluations in simulation and real-world experiments with human participants show that Nl2Hltl2Plan outperforms existing methods, handling more complex instructions while achieving higher success rates and lower costs in task allocation and planning.
2023
[W] Obtaining hierarchy from human instructions: an llms-based approach
Xusheng Luo, Shaojun Xu and Changliu Liu
CoRL 2023 Workshop on Learning Effective Abstractions for Planning (LEAP), 2023
Citation Formats:
[U] Simulation-aided Learning from Demonstration for Robotic LEGO Construction
Ruixuan Liu, Alan Chen, Xusheng Luo and Changliu Liu
arXiv:2309.11010, 2023